Showing posts with label Chemical. Show all posts
Showing posts with label Chemical. Show all posts

Wednesday, September 16, 2015

Luminous Chemical Vapor Deposition and Interface Engineering




Hirotsugu Yasuda, "Luminous Chemical Vapor Deposition and Interface Engineering"


2004 | ISBN-10: 0824757882 | 840 pages | PDF | 36 MB




Providing in-depth coverage of the technologies and various approaches, Luminous Chemical Vapor Deposition and Interface Engineering showcases the development and utilization of LCVD procedures in industrial scale applications. It offers a wide range of examples, case studies, and recommendations for clear understanding of this innovative science.




The book comprises four parts. Part 1 describes the fundamental difference between glow discharge of an inert gas and that of an organic vapor, from which the concepts of Luminous Gas Phase derive. Part 2 explores the various ways of practicing Luminous Vapor Disposition and Treatment depending on the type and nature of substrates. Part 3 covers some very important aspects of surface and interface that could not have been seen clearly without results obtained by application of LCVD. Part 4 offers some examples of interface engineering that show very unique aspects of LCVD interface engineering in composite materials, biomaterial surface and corrosion protection by the environmentally benign process.




Timely and up-to-date, the book provides broad coverage of the complex relationships involved in the interface between a gas/solid, liquid/solid, and a solid/solid. The author presents a new perspective on low-pressure plasma and describes key aspects of the surface and interface that could not be shown without the results obtained by LCVD technologies.




Features


Provides broad coverage of complex relationships involved in interface between a gas/solid, a liquid/solid, and a solid/solid


Addresses the importance of the initial step of creating electrical glow discharge


Describes the principles of creating chemically reactive species and their growth in the luminous gas phase


Focuses on the nature of surface-state of solid and on the creation of imperturbable surface-state by the contacting phase or environment, which is vitally important in creating biocompatible surface, providing super corrosion protection of metals by environmentally benign processes, etc.


Offers examples on how to use LCVD in the interface engineering process


Presents a new view on low-pressure (low-temperature) plasma and emphasizes the importance of luminous gas phase and chemical reactions that occur in the phase








Detection Technologies for Chemical Warfare Agents and Toxic Vapors




Yin Sun, Kwok Y. Ong, "Detection Technologies for Chemical Warfare Agents and Toxic Vapors"


2004 | ISBN-10: 1566706688 | 288 pages | PDF | 20 MB




While it is not possible to predict ― or necessarily prevent ― terrorist incidents in which chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) are deployed, correctly chosen, fast, and reliable detection equipment will allow prepared rescue workers to respond quickly and minimize potential casualties.




Detection Technologies for Chemical Warfare Agents and Toxic Vapors discusses the principles, instrumentation, and context for applying technologies such as ion mobility spectrometry, infrared spectroscopy, colorimetric chemistry, and flame ionization to the detection of TICs and lethal CWAs. It conveys techniques ― some of which have been patented by the authors ― developed for generating vapors and closely imitating potential environmental effects in a laboratory setting, specifically for the testing and evaluation of hand-held, portable, and remote devices. This book also provides a comprehensive list of toxic industrial chemicals classified in terms of hazardousness and their physical, chemical, and toxicological properties. Following a brief historical overview, the text also includes a review of federal detection requirements and the government’s rationale for preparedness and response.




By providing insight on the behavior of toxic chemicals, the authors hope to minimize the fear and chaotic effect in a potential event involving chemical agents. Well written and accessible to technical and non-technical audiences, no other book focuses on analytical methods and explains current detection devices for chemical warfare agents.









Monday, September 14, 2015

Advances in Chemical Physics: AB INITIO Methods in Quantum Chemistry 2 Volume 67 Edition




Advances in Chemical Physics: AB INITIO Methods in Quantum Chemistry 2 (Volume 67) by K. P. Lawley


English | May 20, 1987 | ISBN: 0471909017 | 591 Pages | PDF | 30 MB




The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.










Advances in Chemical Physics, New Methods in Computational Quantum Mechanics Volume 93 Edition




Advances in Chemical Physics, New Methods in Computational Quantum Mechanics by I. Prigogine


English | Apr. 25, 1996 | ISBN: 0471143219 | 817 Pages | PDF | 37 MB




The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: Quantum Monte Carlo methods in chemistry Monte Carlo methods for real-time path integration The Redfield equation in condensed-phase quantum dynamics Path-integral centroid methods in quantum statistical mechanics and dynamics Multiconfigurational perturbation theory-applications in electronic spectroscopy Electronic structure calculations for molecules containing transition metals And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultat fur Physik, Universitat Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P. FULSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-AKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHan, Departamento de Quimica Fisica, Universitat de Valencia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Universita di Trento and Istituto Nazionale di Fisica della Materia, Unita di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJORN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRES, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut fur Organische Chemie, Universitat Zurich, Zurich, Switzerland GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa